Page	Place	Error	It should be
3	paragraph Compliance	This means that the deformation is stiffness times load.	This means that the deformation is compliance times load.
19	formula 10.3	$k_{\text {AC }}$	$k_{B C}$
20	$\begin{aligned} & \text { above figure } \\ & 10.14 \end{aligned}$	a factor 1.5	a factor 3 .
23	formula 10.14, line 2	$=\int_{-\frac{1}{2} h^{2}}^{\frac{1}{2} h} \frac{1}{2} \frac{\sigma_{\max }^{2} \cdot 4 z^{2}}{E h^{2}} b L d z=\left[\frac{1}{2} \frac{\sigma_{\max }^{2} \cdot 4 z^{3}}{3 E h^{2}} b L\right]_{-\frac{1}{2} h}^{\frac{1}{2} h}$	$=\int_{-\frac{1}{2} h}^{\frac{1}{2} h} \frac{1}{2} \frac{\sigma_{\max }^{2} \cdot 4 z^{2}}{E h^{2}} b L d z=\left[\frac{1}{2} \frac{\sigma_{\max }^{2} \cdot 4 z^{3}}{3 E h^{2}} b L\right]_{-\frac{1}{2} h}^{\frac{1}{2} h}$
26	formula 10.25	$\sigma(\rho, y, \varphi)=0 \quad \tau(\rho, y, \varphi)=\tau_{\max } \cdot \frac{2 z}{t}$	$\sigma(x, y, z)=0 \quad \tau(x, y, z)=\tau_{\max } \cdot \frac{2 z}{t}$
27	formula 10.26	variable h	variable t
28	thickness in figure of thin tube	$t=q$	$t=\frac{q}{2}$
$\begin{aligned} & 30, \\ & 31 \end{aligned}$	$\begin{aligned} & \text { equations } \\ & 10.29, \quad 10.30, \\ & 10.31,10.33 \end{aligned}$	θ could have been expressed in L and h	$k_{\text {truss }}=\frac{E h^{3} L t}{4 L^{4}+4 L^{2} h^{2}+h^{4}}$
31	equations 10.32, 10.34	$h t^{3}$	$h^{3} t$

Errata of Design Concepts Volume II, preliminary edition (August 2019)

Page	Place	Error	It should be
31	line six from bottom of page	height to length ratio h / L	length to height ratio L / h
31	line two from bottom of page	stiffness almost the same as the stiffness of the sheet	that is not the case, it is not almost the same
32	figure 10.34	stiffness of symmetrical truss should be as in figure:	
32	equation 10.36	equation of stiffness is wrong	$k_{\mathrm{truss} 2}=\frac{4 E L h^{3} t}{16 L^{4}+8 L^{2} h^{2}+h^{4}}$
33	first sentence	stiffness almost the same as the stiffness of the sheet	that is not the case, it is not almost the same
37	formula 10.47	$\left(12 a^{2}-12+4\right) \frac{E I}{L}$	$\left(12 a^{2}-12 a+4\right) \frac{E I}{L}$
38	formula 10.48, line 3 and 4	$\left(12 a^{2}-12+4\right)$	$\left(12 a^{2}-12 a+4\right)$

Page	Place	Error	It should be
38	formula 10.49, line 2	$M(x)=\frac{\theta E I}{L}(4-6 a)+\frac{\theta E I}{L^{2}}(12 a-6) L a=\frac{\theta E I}{L}(6 a-2)$	$M(L)=\frac{\theta E I}{L}(4-6 a)+\frac{\theta E I}{L^{2}}(12 a-6) L=\frac{\theta E I}{L}(6 a-2)$
45	formula 10.68, line 5	$\beta=\frac{L_{I I}}{L_{I}}=\frac{1}{1-p}$	$\beta=\frac{L_{I I}}{L_{I}}=\frac{p}{1-p}$
51	equation 10.72	$U=\ldots=\frac{1}{2} m \omega^{2} r^{2}(\sin (\omega t)+\cos (\omega t))^{2}=m \omega^{2} r^{2}$	$U=\ldots=\frac{1}{2} m \omega^{2} r^{2}\left(\sin (\omega t)^{2}+\cos (\omega t)^{2}\right)=\frac{1}{2} m \omega^{2} r^{2}$

