Errata of Design Concepts and Strategies, second edition (April 2021)

Page	Place	Error	It should be
41	line 8 and 9	translation in z direction	translation in y direction
57	equation 6.4	$k_{\text {large_angle }}=\frac{K G}{L}+\frac{1}{120} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$	$k_{r_{\text {large_angle }}}=\frac{K G}{L}+\frac{1}{360} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$
57	below equation 6.4	... the factor of stiffness $k_{\text {large_angle }}$ divided by the torsional stiffness k_{I} is plotted against the angle to length ratio $\theta / L \ldots$... the factor of stiffness $k_{r_{\text {large_angle }}}$ divided by the torsional stiffness k_{I} is plotted against the angle to length ratio $\varphi / L \ldots$
58	figure 6.7	figure of stiffening should be as in figure:	
60	calculation	$C_{\mathrm{w}}=\ldots . .=8.10 \cdot 10^{5} \mathrm{~mm}^{4}$	$C_{\mathrm{w}}=\ldots . .=8.10 \cdot 10^{5} \mathrm{~mm}^{6}$
61	calculation	$\beta=\ldots . .=3.04 \cdot 10^{3} \frac{1}{\mathrm{~mm}}$	$\beta=\ldots=3.04 \cdot 10^{-3} \frac{1}{\mathrm{~mm}}$
61	calculation	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots . .=15.7 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots .=1.57 \cdot 10^{4} \frac{\mathrm{Nmm}}{\mathrm{rad}}$

Errata of Design Concepts and Strategies, second edition (April 2021)

Page	Place	Error	It should be
61	calculation	$k_{\mathrm{r}_{\mathrm{II}}}=\ldots . .=529 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{II}}}=\ldots .=5.29 \cdot 10^{5} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
61	calculation	$k_{\mathrm{r}_{\mathrm{III}}}=\ldots . .=20.6 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\text {III }}}=\ldots .=2.06 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
61	calculation	$k_{\mathrm{r}_{\mathrm{IV}}}=\ldots . .=40.5 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{IV}}}=\ldots .=4.05 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
66	equation 6.16 line 1	$\sigma_{\max }=\ldots . \quad$ for $\quad a \geq \frac{1}{2}$	$\sigma_{\max }=\ldots . \quad \text { for } \quad a \leq \frac{1}{2}$
66	equation 6.16 line 3	$\sigma_{\max }=\ldots . \quad$ for $\quad a \quad \leq \frac{1}{2}$	$\sigma_{\max }=\ldots . \quad \text { for } \quad a \geq \frac{1}{2}$
77	figure 6.34e	lenght p	lenght $p L$
90	equation 8.7	$\delta_{\mathrm{sh}}=-\frac{1}{2} \frac{\delta_{\mathrm{c}}^{2}}{L}$	$\delta_{\mathrm{sh}}=-\frac{1}{2} \frac{\delta^{2}}{L}$
90	last paragraph	The shortening of the simple beam is easier to derive when it is modelled as two cantilever beams with a force at the ends.	This is valid for simple beams where the force is applied exactly in the middle (and an approximation for forces close to the middle).
123	equation 10.22	$\frac{W}{d t}=\frac{F x}{d t}=\ldots$	$\frac{W}{d t}=\frac{F d x}{d t}=\ldots$

Page	Place	Error	It should be
123	equation 10.30	$\zeta \approx \frac{\omega_{2}-\omega_{1}}{\omega_{n}} \approx \frac{\Delta \omega}{\omega_{n}}$	$\zeta \approx \frac{\omega_{2}-\omega_{1}}{2 \omega_{n}} \approx \frac{\Delta \omega}{2 \omega_{n}}$
182	equation 13.25	$c=\eta \cdot\left(\frac{3 \pi(2 r)^{3} w}{4 L^{3}}\left(1+\frac{h}{r}\right)\right)$	$c=\eta \cdot\left(\frac{3 \pi(2 r)^{3} L}{4 h^{3}}\left(1+\frac{h}{r}\right)\right)$

