Page	Place	Error	It should be
12	formula 2.10	$-\frac{1}{2} \frac{\delta_{c}^{2}}{L}$	$-\frac{1}{2} \frac{\delta^{2}}{L}$
24	table 2.2 line 5	$4 \begin{array}{lllll}4 & 0 & -2 & 2\end{array}$	$\begin{array}{ccccc}4 & 0 & -2 & 2 & 0.2\end{array}$
26	formula 2.22	$M=F_{1} r+F_{2} r$	$M=F_{1} r-F_{2} r$
46	formula 4.35	$k=\frac{F}{u}=\frac{3 E I}{b^{3}+a b^{2}}$	$k=\frac{F}{\delta_{c}}=\frac{3 E I}{b^{3}+a b^{2}}$
55	equation 5.9	$k_{\text {large_angle }}=\frac{K G}{L}+\frac{1}{120} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$	$k_{r_{\text {large_angle }}}=\frac{K G}{L}+\frac{1}{360} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$
56	table 5.2, line 8	$K=b t^{3}\left(\frac{1}{3}-0.21\left(1-\frac{t^{4}}{12 b^{4}}\right)\right)$	$K=b t^{3}\left(\frac{1}{3}-0.21 \frac{t}{b}\left(1-\frac{t^{4}}{12 b^{4}}\right)\right)$
57	figure 5.10	figure of stiffening should be as in figure:	

Page	Place	Error	It should be
59	calculation	$C_{\mathrm{w}}=\ldots .=8.10 \cdot 10^{5} \mathrm{~mm}^{4}$	$C_{\mathrm{w}}=\ldots . .=8.10 \cdot 10^{5} \mathrm{~mm}^{6}$
59	calculation	$\beta=\ldots . . .=3.04 \cdot 10^{3} \frac{1}{\mathrm{~mm}}$	$\beta=\ldots .=3.04 \cdot 10^{-3} \frac{1}{\mathrm{~mm}}$
60	calculation	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots . .=15.7 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots .=1.57 \cdot 10^{4} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
60	calculation	$k_{\mathrm{rII}}=\ldots . .=529 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{II}}}=\ldots .=5.29 \cdot 10^{5} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
60	calculation	$k_{\mathrm{r}_{\mathrm{III}}}=\ldots . .=20.6 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{rIII}}=\ldots .=2.06 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
60	calculation	$k_{\mathrm{rIV}}=\ldots . .=40.5 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{IV}}}=\ldots . .=4.05 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$

