Page	Place	Error	It should be
			1777, Jack 1999
11	6. 050		$L \checkmark F \qquad \stackrel{\lambda}{\longleftarrow}$
11	figure 2.52	In the left figure the length of the partition is called $d\lambda$	batwaan two (or more)
24	table 2.2 line 5		
		4 0 -2 2 0	4 0 -2 2 0.2
26	formula 2.23	$T = F_1 r + F_2 r$	$T = F_1 r - F_2 r$
28	formula 2.28	$\int_{F_1}^{F_2} \frac{dF}{F} = \int_0^{\varphi} \mu d\theta = \ln \frac{F_2}{F_1} = \mu \varphi \Rightarrow \frac{F_2}{F_1} = e^{\mu \varphi}$	$\int_{F_2}^{F_1} \frac{dF}{F} = \int_0^{\varphi} \mu d\theta = \ln \frac{F_1}{F_2} = \mu \varphi \Rightarrow \frac{F_1}{F_2} = e^{\mu \varphi}$
40	below formula 4.9	If i is much smaller than 1 (if b becomes much bigger than a)	If i is much greater than 1 (if b becomes much greater than a)
42	below formula 4.15	If <i>i</i> is much smaller than 1 (if r_A becomes much bigger than r_B)	If <i>i</i> is much greater than 1 (if r_B becomes much greater than r_A)
45	formula 4.28 and line below		
		$U = \frac{1}{2} \frac{F_{in}^2}{k_{sys}} = \frac{1}{2} \frac{F_{AC}^2}{k_{AC}} + \frac{1}{2} \frac{F_{BC}^2}{k_{BC}} = \frac{1}{2} \frac{\left(F_{in} \cdot \frac{\sin(\beta)}{\sin(\theta)}\right)^2}{k_{AC}} + \frac{1}{2} \frac{\left(F_{in} \cdot \frac{\sin(\alpha)}{\sin(\theta)}\right)^2}{k_{BC}}$	$U = \frac{1}{2} \frac{F_{ext}^2}{k_{sys}} = \frac{1}{2} \frac{F_{AC}^2}{k_{AC}} + \frac{1}{2} \frac{F_{BC}^2}{k_{BC}} = \frac{1}{2} \frac{\left(F_{ext} \cdot \frac{\sin(\beta)}{\sin(\theta)}\right)^2}{k_{AC}} + \frac{1}{2} \frac{\left(F_{ext} \cdot \frac{\sin(\alpha)}{\sin(\theta)}\right)^2}{k_{BC}}$
		The stiffness of the truss can be derived by dividing the energy formula by $\frac{1}{2}F_{in}^2$.	The stiffness of the truss can be derived by dividing the energy formula by $\frac{1}{2}F_{ext}^2$.
48	line below for- mula 4.38	Dividing formula 4.38 by $\frac{1}{2}F_{in}^2$	Dividing formula 4.38 by $\frac{1}{2}F^2$
50	line 4 in 5.1.3	bending (a) and shear (b)	shear (a) and bending (b)
51	caption of fig- ure 5.3	Deformation due to a) bending and b) shear	Deformation due to a) shear and b) bending
51	formula 5.4	$k_{shear} = \frac{G \cdot A}{f_s}$	$k_{shear} = rac{G \cdot A}{f_s \cdot L}$
52	table 5.1	Form factor rectangle $\frac{5}{6}$	Form factor rectangle $\frac{6}{5}$
55	equation 5.8	$k_{ ext{large_angle}} = rac{KG}{L} + rac{1}{120}Eigg(rac{arphi^2}{L^3}igg)tb^5$	$k_{r_{\text{large-angle}}} = \frac{KG}{L} + \frac{1}{360} E\left(\frac{\varphi^2}{L^3}\right) t b^5$
56	table 5.2 top 3 rows	$0, 0, \neq 0$	The C_w is not applicable for closed profiles. If there would be a value it would probably rather be very high than zero.
56	table 5.2 row 8	$K = bt^3 \left(\frac{1}{3} - 0.21\left(1 - \frac{t^4}{12b^4}\right)\right)$	$K = bt^{3} \left(\frac{1}{3} - 0.21 \frac{t}{b} \left(1 - \frac{t^{4}}{12b^{4}}\right)\right)$
			$\frac{k_{r_{large_angle}}^{R}}{k_{r_{I}}}^{R}$
57	figure 5.10	figure of stiffening should be as in figure:	$0 1 2 3 \frac{L}{L} \begin{bmatrix} \frac{L}{M} \end{bmatrix}$
60	calculation	$C_{\rm w} = \dots = 8.10 \cdot 10^5 {\rm mm}^4$	$C_{\rm w} = = 8.10 \cdot 10^5 {\rm mm}^6$
60	calculation	$\beta = \dots = 3.04 \cdot 10^3 \frac{1}{\mathrm{mm}}$	$\beta = \dots = 3.04 \cdot 10^{-3} \frac{1}{\text{mm}}$
60	calculation	$k_{\rm r_I} = \dots = 15.7 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_I} = \ldots = 1.57 \cdot 10^4 \frac{\rm Nmm}{\rm rad}$

Table 1 - Continued from previous page

Page	Place	Error	It should be
60	calculation	$k_{r_{II}} = \dots = 529 \frac{\text{Nmm}}{\text{rad}}$	$k_{\rm r_{II}} = \dots = 5.29 \cdot 10^5 \frac{\rm Nmm}{\rm rad}$
60	calculation	$k_{\rm r_{III}} = \dots = 20.6 \cdot 10^2 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_{III}} = = 2.06 \cdot 10^6 \frac{\rm Nmm}{\rm rad}$
60	calculation	$k_{\rm r_{\rm IV}} = \dots = 40.5 \cdot 10^2 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_{\rm IV}} = \dots = 4.05 \cdot 10^6 \frac{\rm Nmm}{\rm rad}$
65	figure 6.1, ver- tical axis	F	k
68	figure 6.5	lines for r_{1y} and r_{2y} are drawn from the midpoints of the ellipsoids	r_{1y} r_{1x} r_{2y} r_{2x} $y2$ $y1$ $x1$ $x2$
71	formula 6.15	$\delta_A = \frac{F}{L} \frac{1 - \nu_A^2}{\pi E_A} \left(2 \ln \left(\frac{2d_A}{a_A} \right) - \frac{\nu_A}{1 - \nu_A} \right)$	$\delta_A = \frac{F}{L} \frac{1 - \nu_A^2}{\pi E_A} \left(2 \ln \left(\frac{2d_A}{a_{AB}} \right) - \frac{\nu_A}{1 - \nu_A} \right) \text{(approximation)}$ or $\delta_A = \frac{F}{L} \frac{1 - \nu_A^2}{\pi E_A} \left(2 \ln \left(\frac{4d_A}{a_{AB}} \right) - 1 \right) \text{for} d_A < R_A$
71	formula 6.16 and 6.18	$a_A = \sqrt{\frac{4FR_A}{L\pi E*}}$ and $a_B = \sqrt{\frac{4FR_B}{L\pi E*}}$	$a_{AB} = \sqrt{\frac{4FR_c}{L\pi E^*}}$ with $R_c = \left(\frac{1}{r_A} + \frac{1}{r_B}\right)^{-1}$
71	formula 6.17	$\delta_B = \frac{F}{L} \frac{1 - \nu_B^2}{\pi E_B} \left(2 \ln \left(\frac{2d_B}{a_B} \right) - \frac{\nu_B}{1 - \nu_B} \right)$	$\delta_B = \frac{F}{L} \frac{1 - \nu_B^2}{\pi E_B} \left(2 \ln \left(\frac{2d_B}{a_{AB}} \right) - \frac{\nu_B}{1 - \nu_B} \right) \text{(approximation)}$ or $\delta_B = \frac{F}{L} \frac{1 - \nu_B^2}{\pi E_B} \left(2 \ln \left(\frac{4d_B}{a_{AB}} \right) - 1 \right) \text{for} d_B < R_B$