Page	Place	Error	It should be
11	figure 2.52	In the left figure the length of the partition is called $d \lambda$	
14	first line of 2.5	between to	between two (or more)
24	table 2.2 line 5	$4 \begin{array}{lllll}4 & 0 & -2 & 2 & 0\end{array}$	$\begin{array}{lllll}4 & 0 & -2 & 2 & 0.2\end{array}$
26	formula 2.23	$T=F_{1} r+F_{2} r$	$T=F_{1} r-F_{2} r$
28	formula 2.28	$\int_{F_{1}}^{F_{2}} \frac{d F}{F}=\int_{0}^{\varphi} \mu d \theta=\ln \frac{F_{2}}{F_{1}}=\mu \varphi \quad \Rightarrow \quad \frac{F_{2}}{F_{1}}=e^{\mu \varphi}$	$\int_{F_{2}}^{F_{1}} \frac{d F}{F}=\int_{0}^{\varphi} \mu d \theta=\ln \frac{F_{1}}{F_{2}}=\mu \varphi \quad \Rightarrow \quad \frac{F_{1}}{F_{2}}=e^{\mu \varphi}$
40	below formula 4.9	If i is much smaller than 1 (if b becomes much bigger than a)	If i is much greater than 1 (if b becomes much greater than a)
42	below formula 4.15	If i is much smaller than 1 (if r_{A} becomes much bigger than r_{B})	If i is much greater than 1 (if r_{B} becomes much greater than r_{A})
45	formula 4.28 and line below	$U=\frac{1}{2} \frac{F_{i n}^{2}}{k_{s y s}}=\frac{1}{2} \frac{F_{A C}^{2}}{k_{A C}}+\frac{1}{2} \frac{F_{B C}^{2}}{k_{B C}}=\frac{1}{2} \frac{\left(F_{i n} \cdot \frac{\sin (\beta)}{\sin (\theta)}\right)^{2}}{k_{A C}}+\frac{1}{2} \frac{\left(F_{i n} \cdot \frac{\sin (\alpha)}{\sin (\theta)}\right)^{2}}{k_{B C}}$ The stiffness of the truss can be derived by dividing the energy formula by $\frac{1}{2} F_{i n}^{2}$.	$U=\frac{1}{2} \frac{F_{e x t}^{2}}{k_{s y s}}=\frac{1}{2} \frac{F_{A C}^{2}}{k_{A C}}+\frac{1}{2} \frac{F_{B C}^{2}}{k_{B C}}=\frac{1}{2} \frac{\left(F_{e x t} \cdot \frac{\sin (\beta)}{\sin (\theta)}\right)^{2}}{k_{A C}}+\frac{1}{2} \frac{\left(F_{e x t} \cdot \frac{\sin (\alpha)}{\sin (\theta)}\right)^{2}}{k_{B C}}$ The stiffness of the truss can be derived by dividing the energy formula by $\frac{1}{2} F_{e x t}^{2}$.
48	line below formula 4.38	Dividing formula 4.38 by $\frac{1}{2} F_{\text {in }}^{2}$	Dividing formula 4.38 by $\frac{1}{2} F^{2}$
50	line 4 in 5.1.3	bending (a) and shear (b)	shear (a) and bending (b)
51	caption of figure 5.3	Deformation due to a) bending and b) shear	Deformation due to a) shear and b) bending
51	formula 5.4	$k_{\text {shear }}=\frac{G \cdot A}{f_{s}}$	$k_{\text {shear }}=\frac{G \cdot A}{f_{s} \cdot L}$
52	table 5.1	Form factor rectangle $\frac{5}{6}$	Form factor rectangle $\frac{6}{5}$
55	equation 5.8	$k_{\text {large_angle }}=\frac{K G}{L}+\frac{1}{120} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$	$k_{r_{\text {large_angle }}}=\frac{K G}{L}+\frac{1}{360} E\left(\frac{\varphi^{2}}{L^{3}}\right) t b^{5}$
56	table 5.2 top 3 rows	$0,0, \neq 0$	The C_{w} is not applicable for closed profiles. If there would be a value it would probably rather be very high than zero.
56	table 5.2 row 8	$K=b t^{3}\left(\frac{1}{3}-0.21\left(1-\frac{t^{4}}{12 b^{4}}\right)\right)$	$K=b t^{3}\left(\frac{1}{3}-0.21 \frac{t}{b}\left(1-\frac{t^{4}}{12 b^{4}}\right)\right)$
57	figure 5.10	figure of stiffening should be as in figure:	
60	calculation	$C_{\mathrm{w}}=\ldots . .=8.10 \cdot 10^{5} \mathrm{~mm}^{4}$	$C_{\mathrm{w}}=\ldots . .=8.10 \cdot 10^{5} \mathrm{~mm}^{6}$
60	calculation	$\beta=\ldots . .=3.04 \cdot 10^{3} \frac{1}{\mathrm{~mm}}$	$\beta=\ldots .=3.04 \cdot 10^{-3} \frac{1}{\mathrm{~mm}}$
60	calculation	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots . . .=15.7 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{I}}}=\ldots . .=1.57 \cdot 10^{4} \frac{\mathrm{Nmm}}{\mathrm{rad}}$

Table 1 - Continued from previous page

Page	Place	Error	It should be
60	calculation	$k_{\mathrm{r}_{\mathrm{II}}}=\ldots . .=529 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\mathrm{II}}}=\ldots . .=5.29 \cdot 10^{5} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
60	calculation	$k_{\mathrm{r}_{\mathrm{III}}}=\ldots . .=20.6 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{rIIII}}=\ldots . .=2.06 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
60	calculation	$k_{\mathrm{r}_{\mathrm{IV}}}=\ldots . .=40.5 \cdot 10^{2} \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\mathrm{r}_{\text {IV }}}=\ldots . .=4.05 \cdot 10^{6} \frac{\mathrm{Nmm}}{\mathrm{rad}}$
65	figure 6.1, vertical axis	F	k
68	figure 6.5	lines for $r_{1 y}$ and $r_{2 y}$ are drawn from the midpoints of the ellipsoids	
71	formula 6.15	$\delta_{A}=\frac{F}{L} \frac{1-\nu_{A}^{2}}{\pi E_{A}}\left(2 \ln \left(\frac{2 d_{A}}{a_{A}}\right)-\frac{\nu_{A}}{1-\nu_{A}}\right)$	$\begin{gathered} \delta_{A}=\frac{F}{L} \frac{1-\nu_{A}^{2}}{\pi E_{A}}\left(2 \ln \left(\frac{2 d_{A}}{a_{A B}}\right)-\frac{\nu_{A}}{1-\nu_{A}}\right) \quad \text { (approximation) } \\ \text { or } \quad \delta_{A}=\frac{F}{L} \frac{1-\nu_{A}^{2}}{\pi E_{A}}\left(2 \ln \left(\frac{4 d_{A}}{a_{A B}}\right)-1\right) \quad \text { for } \quad d_{A}<R_{A} \end{gathered}$
71	formula 6.16 and 6.18	$a_{A}=\sqrt{\frac{4 F R_{A}}{L \pi E *}} \quad \text { and } \quad a_{B}=\sqrt{\frac{4 F R_{B}}{L \pi E *}}$	$a_{A B}=\sqrt{\frac{4 F R_{c}}{L \pi E^{*}}} \quad \text { with } \quad R_{c}=\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right)^{-1}$
71	formula 6.17	$\delta_{B}=\frac{F}{L} \frac{1-\nu_{B}^{2}}{\pi E_{B}}\left(2 \ln \left(\frac{2 d_{B}}{a_{B}}\right)-\frac{\nu_{B}}{1-\nu_{B}}\right)$	$\begin{gathered} \delta_{B}=\frac{F}{L} \frac{1-\nu_{B}^{2}}{\pi E_{B}}\left(2 \ln \left(\frac{2 d_{B}}{a_{A B}}\right)-\frac{\nu_{B}}{1-\nu_{B}}\right) \quad \text { (approximation) } \\ \text { or } \quad \begin{array}{c} \delta_{B}=\frac{F}{L} \frac{1-\nu_{B}^{2}}{\pi E_{B}}\left(2 \ln \left(\frac{4 d_{B}}{a_{A B}}\right)-1\right) \quad \text { for } \quad d_{B}<R_{B} \end{array} . \end{gathered}$

