Page	Place	Error	It should be
57	equation 6.4	$k_{\text{large_angle}} = \frac{KG}{L} + \frac{1}{120} E\left(\frac{\varphi^2}{L^3}\right) tb^5$	$k_{r_{\text{large_angle}}} = \frac{KG}{L} + \frac{1}{360} E\left(\frac{\varphi^2}{L^3}\right) tb^5$
57	below equation 6.4	the factor of stiffness $k_{\text{large_angle}}$ divided by the torsional stiffness k_{I} is plotted against the angle to length ratio θ/L	the factor of stiffness $k_{r_{\text{large}angle}}$ divided by the torsional stiffness k_{I} is plotted against the angle to length ratio φ/L
58	figure 6.7	figure of stiffening should be as in figure:	$\frac{k_{r_{large_angle}}^{R}}{k_{r_{1}}}^{8}$ $1.5:1$ $1:1$ $0.5:1$ $\frac{1}{2}$ $\frac{\varphi_{L}}{m}$
60	calculation	$C_{\rm w} = = 8.10 \cdot 10^5 {\rm mm}^4$	$C_{\rm w} = = 8.10 \cdot 10^5 {\rm mm}^6$
61	calculation	$\beta = \dots = 3.04 \cdot 10^3 \frac{1}{\mathrm{mm}}$	$\beta = = 3.04 \cdot 10^{-3} \frac{1}{\text{mm}}$
61	calculation	$k_{\rm r_I} = \dots = 15.7 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_I} = \dots = 1.57 \cdot 10^4 \frac{\rm Nmm}{\rm rad}$
61	calculation	$k_{\mathrm{r_{II}}} = \dots = 529 \frac{\mathrm{Nmm}}{\mathrm{rad}}$	$k_{\rm r_{II}} = \dots = 5.29 \cdot 10^5 \frac{\rm Nmm}{\rm rad}$

Page	Place	Error	It should be
61	calculation	$k_{\rm r_{III}} = \dots = 20.6 \cdot 10^2 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_{III}} = = 2.06 \cdot 10^6 \frac{\rm Nmm}{\rm rad}$
61	calculation	$k_{\rm r_{\rm IV}} = \dots = 40.5 \cdot 10^2 \frac{\rm Nmm}{\rm rad}$	$k_{\rm r_{\rm IV}} = \dots = 4.05 \cdot 10^6 \frac{\rm Nmm}{\rm rad}$
66	equation 6.16 line 1	$\sigma_{\max} = \dots$ for $a \ge \frac{1}{2}$	$\sigma_{\max} = \dots$ for $a \leq \frac{1}{2}$
66	equation 6.16 line 3	$\sigma_{\max} = \dots$ for $a \leq \frac{1}{2}$	$\sigma_{\max} = \dots$ for $a \ge \frac{1}{2}$
77	figure 6.34e	lenght p	lenght pL
90	equation 8.7	$\delta_{\rm sh} = -\frac{1}{2} \frac{\delta_c^2}{L}$	$\delta_{\rm sh} = -\frac{1}{2}\frac{\delta^2}{L}$
90	last paragraph	The shortening of the simple beam is easier to derive when it is mod- elled as two cantilever beams with a force at the ends.	This is valid for simple beams where the force is applied exactly in the middle (and an approximation for forces close to the middle).
122	first line below phase angle	reference to equation 10.14	should be to equation 10.15
164	equation 13.3	k_{AC}	k_{BC}

Page	Place	Error	It should be
168	thickness in fig- ure of thin tube	t = q	$t = \frac{q}{2}$
170, 171	equations 13.12, 13.13, 13.15	θ could have been expressed in L and h	$k_{\rm truss} = \frac{Eh^3Lt}{4L^4 + 4L^2h^2 + h^4}$
171	equations 13.14, 13.16	ht^3	h^3t
171	above figure 13.27	height to length ratio h/L	length to height ratio L/h
171	last sentence	stiffness almost the same as the stiffness of the sheet	that is not the case, it is not almost the same
172 172	figure 13.28 equation 13.18	stiffness of symmetrical truss should be as in figure: equation of stiffness is wrong	$ \frac{k}{Et} - \frac{k_{\text{sheet}}}{Et} - \frac{k_{\text{sheet}}}{Et} - \frac{k_{\text{truss}}}{Et} - k_{\text{t$
72	below equation 13.18	stiffness almost the same as the stiffness of the sheet	that is not the case, it is not almost the same

Page	Place	Error	It should be
178	equation 13.24	$\omega_1 =$	$\omega_{n1} =$
190	equation 13.31	$L(1-\cos\alpha) \approx \frac{\alpha^2}{2}$	$L(1 - \cos \alpha) \approx \frac{\alpha^2 L}{2}$
224	equation 16.4	$U = \dots = \frac{1}{2}m\omega^2 r^2 \left(\sin(\omega t) + \cos(\omega t)\right)^2 = m\omega^2 r^2$	$U = \dots = \frac{1}{2}m\omega^{2}r^{2}\left(\sin(\omega t)^{2} + \cos(\omega t)^{2}\right) = \frac{1}{2}m\omega^{2}r^{2}$
225	equation 16.4	$y = L_{\text{beam}} \cos(\theta) z = L_{\text{beam}} \sin(\theta)$	$y = L_{\text{beam}} \cos(\theta)$ $z = L_{\text{beam}} \sin(\theta)$
226	figure 16.3	h_0	L_0
226	equation 16.8, line 3	$kL_A L_B \sin(\theta) + mgL_C \sin(\theta) = 0$	$kL_A L_B \sin(\theta) - mgL_C \sin(\theta) = 0$
277	table C.2, line 3	$k = \frac{3EI}{L^3 a^2 (a - 2a + a^2)}$	$k = \frac{3EI}{L^3 a^2 (1 - 2a + a^2)}$
280	table C.5, line 8	$K = bt^3 \left(\frac{1}{3} - 0.21\left(1 - \frac{t^4}{12b^4}\right)\right)$	$K = bt^{3} \left(\frac{1}{3} - 0.21 \frac{t}{b} \left(1 - \frac{t^{4}}{12b^{4}}\right)\right)$